Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 905
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 538: 109102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569333

RESUMO

The classical Koenigs-Knorr glycosidation of bromides or chlorides promoted with Ag2O or Ag2CO3 works only with reactive substrates (ideally both donor and acceptor). This reaction was found to be practically ineffective with unreactive donors such as per-O-benzoylated mannosyl bromide. Recently, it was discovered that the addition of catalytic (Lewis) acids to a silver salt-promoted reaction has a dramatic effect on the reaction rate and yield. A tentative mechanism for this cooperatively-catalyzed glycosylation reaction has been proposed, and the improved understanding of the reaction led to more efficient protocols and broader applications to a variety of glycosidic linkages. Since Ag2O-mediated activation was introduced by German chemists Koenigs and Knorr, and "cooperatively catalyzed" is Kooperativ Katalysiert in German, we refer to this new reaction as "the 4K reaction."


Assuntos
Glicosídeos , Ácidos de Lewis , Glicosilação , Catálise , Brometos
2.
Acc Chem Res ; 57(6): 933-944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501206

RESUMO

ConspectusNuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.


Assuntos
Complexos de Coordenação , Medicina Nuclear , Humanos , Compostos Radiofarmacêuticos/química , Ácidos de Lewis , Complexos de Coordenação/química , Ligantes , Distribuição Tecidual , Radioisótopos/química , Quelantes/química , Metais , Íons
3.
Environ Sci Technol ; 58(9): 4145-4154, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381076

RESUMO

The deactivation of selective catalytic reduction (SCR) catalysts caused by alkali metal poisoning remains an insurmountable challenge. In this study, we examined the impact of Na poisoning on the performance of Fe and Mo co-doped TiO2 (FeaMobTiOx) catalysts in the SCR reaction and revealed the related alkali resistance mechanism. On the obtained Fe1Mo2.6TiOx catalyst, the synergistic catalytic effect of uniformly dispersed FeOx and MoOx species leads to remarkable catalytic activity, with over 90% NO conversion achieved in a wide temperature range of 210-410 °C. During the Na poisoning process, Na ions predominantly adsorb on the MoOx species, which exhibit stronger alkali resistance, effectively safeguarding the FeOx species. This preferential adsorption minimizes the negative effect of Na poisoning on Fe1Mo2.6TiOx. Moreover, Na poisoning has little influence on the Eley-Rideal reaction pathway involving adsorbed NHx reacting with gaseous NOx. After Na poisoning, the Lewis acid sites were deteriorated, while the abundant Brønsted acid sites ensured sufficient NHx adsorption. As a benefit from the self-defense effects of active MoOx species for alkali capture, FeaMobTiOx exhibits exceptional alkali resistance in the SCR reaction. This research provides valuable insights for the design of highly efficient and alkali-resistant SCR catalysts.


Assuntos
Álcalis , Amônia , Catálise , Ácidos de Lewis , Metais
4.
Chemosphere ; 352: 141473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382721

RESUMO

A strategy to enhance the photocatalytic performance of metal-organic framework (MOF) based systems for the efficient elimination of Cr(VI) ions from polluted water under visible light irradiation has been developed by constructing MOF@MOF heterojunctions. Specifically, IRMOF-3 was grown in situ around NH2-MIL-101(Fe) based on interfacial Lewis acid-base interaction using 2-aminoterephthalic acid (ATA) as a linker, resulting in the formation of a MOF@MOF heterojunction, designated as IRMOF-3@NH2-MIL-101(Fe). In comparison to individual MOFs, the IRMOF-3@NH2-MIL-101(Fe) heterojunction exhibited a significantly higher photocatalytic reduction efficiency for Cr(VI), achieving a reduction of 95.98% within 120 min under visible-light irradiation. This performance surpasses that of individual MOFs and most reported photocatalysts. Additionally, the mechanism underlying Cr(VI) reduction by IRMOF-3@NH2-MIL-101(Fe) was comprehensively elucidated by analyzing optoelectronic properties, energy band structure, and structural results. It is worth noting that this study represents the first documented instance of photocatalytic Cr(VI) reduction utilizing IRMOF-3 and its interaction with NH2-MIL-101(Fe). The MOF@MOF photocatalyst, leveraging the synergistic effects of its various components, holds great promise for efficiently removing harmful pollutants from water and finds significant potential applications in environmental remediation.


Assuntos
Cromo , Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos de Lewis , Bases de Lewis , Água
5.
Int J Biol Macromol ; 260(Pt 1): 129472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262833

RESUMO

Converting cellulose (Cel) into ethyl levulinate (EL) is one of the promising strategies for supplying liquid fuels. In this paper, the prepared sulfonated P-W-modified N-containing carbon-based solid acid catalyst (PWNCS), in which the Polyaniline (PANI) was employed as N and C precursors, successfully converted Cel into EL under the water-ethanol medium. The characterization results demonstrated that a tiny addition of P increased the Brønsted acid sites (BAS) content and defective WO3 provided the Lewis acid sites (LAS), meanwhile, the sulfonation process did not change the fundamental structure but introduced the sulfonic groups to dramatically increase the acidic content. Therefore, under optimized reaction conditions, PWNCS realized about 100% Cel conversion and 71.61% of EL yield, furthermore, the selectivity of EL reached 89.14%. In addition, the effect of water on the reaction pathway of Cel to EL over PWNCS was proposed. The addition of water generally resulted in the hydration of defective WO3 to reduce the LAS and increase BAS, which significantly inhibited the side reactions of retro-aldol condensation (RAC) and subsequent etherification reactions during Cel conversion and then improved the selectivity of EL.


Assuntos
Celulose , Etanol , Ácidos Levulínicos , Celulose/química , Etanol/química , Água/química , Carbono/química , Nitrogênio , Ácidos de Lewis , Alcanossulfonatos , Catálise
6.
Environ Res ; 247: 118255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266890

RESUMO

Lewis acids of solid catalysts have been featured for a pivotal role in promoting various reactions. Regarding the oxidation protocol to remove formaldehyde, the inherent drawback of the best-studied MnO2 materials in acidic sites has eventually caused deficiency of active hydroxyls to sustain low-temperature activity. Herein, the cryptomelane-type MnO2 was targeted and it was tuned via incorporation of Zr metal, exhibiting great advances in not only the complete HCHO-to-CO2 degradation but also cycling performance. Zr species were existent in doping state in the MnO2 lattice, rendering lower crystallinity and breaking the regular growth of MnO2 crystallites, which thereby tripled surface area and created larger volume of smaller mesopores. Meantime, the local electronic properties of Mn atoms were also changed by Zr doping, i.e., more low-valence Mn species were formed due to the electron transfer from Zr to Mn. The results of infrared studies demonstrate the higher possession of Lewis acid sites on ZrMn, and this high degree of electrophilic agents favored the production of hydroxyl species. Furthermore, the reactivity of surface hydroxyls, as investigated by CO temperature programmed reduction and temperature programmed desorption of adsorbed O2, was obviously improved as well after Zr modification. It is speculated jointly with the characterizations of the post-reaction catalysts that the accelerated production of active hydroxyls helped rapidly convert formaldehyde into key intermediate-formate, which was then degraded into CO2, avoiding the side reaction path with undesired intermediate-hydrocarbonate-over the pristine MnO2, where active sites were blocked and formaldehyde oxidation was inhibited. Additionally, Zr decoration could stabilize Lewis acidity to be more resistant to heat degeneration, and this merit brought about advantageous thermal recyclability for cycled application.


Assuntos
Ácidos de Lewis , Óxidos , Óxidos/química , Compostos de Manganês/química , Dióxido de Carbono , Formaldeído/química , Catálise
7.
Int J Biol Macromol ; 254(Pt 2): 127853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935296

RESUMO

In this work, Lewis acids (FeCl3, AlCl3) and bases (Na2CO3, Na2SO3) were incorporated into a neutral deep eutectic solvent (DES, choline chloride/glycerin) to intensify the lignocellulose fractionation. The efficiency of fractionation in terms of the maximum delignification rate (89.7 %) and well-pleasing cellulose saccharification (100 %) could be achieved by the Lewis acid-mediated DES. An in-depth insight of the evolution of lignin structure revealed that Lewis acid-mediated DES could cleave the ß-O-4 linkages efficiently to achieve a high yield lignin fragments. Meanwhile, the lignin fragments with the enhanced amphiphilic properties facilitate the preparation of lignin nanospheres (LNSs) via the self-assembly process. The resultant LNSs extracted by Lewis acid-mediated DES exhibited an excellent thermal stability, and enhanced antibacterial capacity, which were associated with the phenolic OH content. However, the extracted lignin by Lewis base-mediated DES was mainly attributed to the cleavage of lignin-carbohydrate complexes bond, especially the lignin-carbohydrate ester bond, which retained more ether bonds and a relatively complete structure. This study illuminated the different mechanisms of lignin extraction and the structural evolution of lignin from Lewis acid/base-mediated DES, and provided guidance to select suitable fractionation techniques for upgrading the downstream products.


Assuntos
Lignina , Nanosferas , Lignina/química , Ácidos de Lewis , Solventes Eutéticos Profundos , Bases de Lewis , Hidrólise , Biomassa , Carboidratos/química , Solventes/química , Glicerol , Colina/química
8.
Environ Pollut ; 343: 123198, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128713

RESUMO

Wax is a detrimental byproduct of plastic waste pyrolysis causing challenges upon its release into the environment owing to persistence and potential toxicity. In this study, the valorization of wax materials through conversion into BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) was achieved via catalytic pyrolysis using zeolite-based catalysts. The potential of two types of waxes, spent wax (SW), derived from the pyrolysis of plastic waste, and commercial paraffin wax (PW), for BTEX generation, was investigated. Using HZSM-5, higher yields of oil (54.9 wt%) and BTEX (18.2 wt%) were produced from the pyrolysis of SW compared to PW (32.3 and 14.1 wt%, respectively). This is due to the improved accessibility of lighter hydrocarbons in SW to Brønsted and Lewis acid sites in HZSM-5 micropores, promoting cracking, isomerization, cyclization, Diels-Alder, and dehydrogenation reactions. Further, the use of HZSM-5 resulted in significantly larger yields of oil and BTEX from SW pyrolysis compared to Hbeta and HY. This phenomenon is ascribed to the well-balanced distribution of Brønsted and Lewis acid sites and the identical geometric structure of HZSM-5 micropores and BTEX molecules. The addition of Ga to HZSM-5 further led to 2.24% and 28.30% enhancements in oil and BTEX yields, respectively, by adjusting the acidity of the catalyst through the introduction of new Lewis acid sites. The regeneration of the Ga/HZSM-5 catalyst by removing deposited coke on the spent catalyst under air partially recovered catalytic activity. This study not only offers an efficient transformation of undesirable wax into valuable fuels but also provides an environmentally promising solution, mitigating pollution, contributing to carbon capture, and promoting a healthier and more sustainable environment. It also suggests future research directions, including catalyst optimization and deactivation management, feedstock variability exploration, and techno-economic analyses for sustainable wax conversion into BTEX via catalytic pyrolysis.


Assuntos
Ácidos de Lewis , Pirólise , Hidrocarbonetos , Tolueno , Catálise , Meio Ambiente , Temperatura Alta
9.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , 60693 , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
10.
Acc Chem Res ; 56(22): 3175-3187, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37938969

RESUMO

ConspectusAerobic organisms involve dioxygen-activating iron enzymes to perform various metabolically relevant chemical transformations. Among these enzymes, mononuclear non-heme iron enzymes reductively activate dioxygen to catalyze diverse biological oxidations, including oxygenation of C-H and C═C bonds and C-C bond cleavage with amazing selectivity. Several non-heme enzymes utilize organic cofactors as electron sources for dioxygen reduction, leading to the generation of iron-oxygen intermediates that act as active oxidants in the catalytic cycle. These unique enzymatic reactions influence the design of small molecule synthetic compounds to emulate enzyme functions and to develop bioinspired catalysts for performing selective oxidation of organic substrates with dioxygen. Selective electron transfer during dioxygen reduction on iron centers of synthetic models by a sacrificial reductant requires appropriate design strategies. Taking lessons from the role of enzyme-cofactor complexes in the selective electron transfer process, our group utilized ternary iron(II)-α-hydroxy acid complexes supported by polydentate ligands for dioxygen reduction and bioinspired oxidations. This Account focuses on the role of coordinated sacrificial reductants in the selective electron transfer for dioxygen reduction by iron complexes and highlights the versatility of iron(II)-α-hydroxy acid complexes in affecting dioxygen-dependent oxidation/oxygenation reactions. The iron(II)-coordinated α-hydroxy acid anions undergo two-electron oxidative decarboxylation concomitant with the generation of reactive iron-oxygen oxidants. A nucleophilic iron(II)-hydroperoxo species was intercepted in the decarboxylation pathway. In the presence of a Lewis acid, the O-O bond of the nucleophilic oxidant is heterolytically cleaved to generate an electrophilic iron(IV)-oxo-hydroxo oxidant. Most importantly, the oxidants generated with or without Lewis acid can carry out cis-dihydroxylation of alkenes. Furthermore, the electrophilic iron-oxygen oxidant selectively hydroxylates strong C-H bonds. Another electrophilic iron(IV)-oxo oxidant, generated from the iron(II)-α-hydroxy acid complexes in the presence of a protic acid, carries out C-H bond halogenation by using a halide anion.Thus, different metal-oxygen intermediates could be generated from dioxygen using a single reductant, and the reactivity of the ternary complexes can be tuned using external additives (Lewis/protic acid). The catalytic potential of the iron(II)-α-hydroxy complexes in performing O2-dependent oxygenations has been demonstrated. Different factors that govern the reactivity of iron-oxygen oxidants from ternary iron(II) complexes are presented. The versatile reactivity of the oxidants provides useful insights into developing catalytic methods for the selective incorporation of oxidized functionalities under environmentally benign conditions using aerial oxygen as the terminal oxidant.


Assuntos
Ácidos de Lewis , Oxigênio , Oxigênio/química , Substâncias Redutoras , Ferro/química , Oxirredução , Oxidantes/química , Compostos Ferrosos/química , Hidroxiácidos
11.
Int J Biol Macromol ; 253(Pt 7): 127353, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839592

RESUMO

As a green and renewable nanomaterial, cellulose nanocrystals (CNC) have received numerous attention due to the unique structural features and superior physicochemical properties. Conventionally, CNC was isolated from lignocellulosic biomass mostly depending on sulfuric or hydrochloric acid hydrolysis. Although this approach is effective, some critical issues such as severe equipment corrosion, excessive cellulose degradation, serious environmental pollution, and large water usage are inevitable. Fortunately, solid acid hydrolysis is emerging as an economical and sustainable CNC production technique and has achieved considerable progress in recent years. Herein, the preparation of CNC by solid acid hydrolysis was summarized systematically, including organic solid acids (citric, maleic, oxalic, tartaric, p-toluenesulfonic acid) and inorganic solid acids (phosphotungstic, phosphoric, and Lewis acid). The advantages and disadvantages of organic and inorganic solid acid hydrolysis methods were evaluated comprehensively. Finally, the challenges and opportunities in the later exploitation and application of solid acid hydrolysis to prepare CNC in the industrial context are discussed. Considering the future development of this technology in the large-scale CNC production, much more efforts should be made in lowering CNC processing cost, fabricating high-solid-content and re-dispersible CNC, developing value-added applications of CNC, and techno-economic analysis and life cycle assessment on the whole process.


Assuntos
Celulose , Nanopartículas , Celulose/química , Hidrólise , Água , Nanopartículas/química , Ácidos de Lewis
12.
Int J Biol Macromol ; 252: 126093, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573910

RESUMO

Inspired by recent advances on functional modification of cellulosic materials, the crosslinking behaviors of epoxide with cellulose under the catalysis of different homogeneous catalysts including H2O, Brønsted acid, Brønsted base, Lewis acid and neutral salt were systematically investigated using density functional theory (DFT) methods with hybrid micro-solvation-continuum approach. The results showed that catalytic activity, reaction mechanism and regioselectivity are determined by the combined effect of catalyst type, electronic effect and steric hindrance. All the homogeneous catalysts have catalytic activity for the crosslinking reaction, which decreases in the order of NaOH > HCl > NCl3 > MCl2 > CH3COOH > NaCl (N = Fe3+, Al3+; M = Zn2+, Ca2+). Upon the catalysis of NaOH, hydroxyl group of cellulose is firstly deprotonated to form a carbanion-like intermediate which will further attack the less sterically hindered C atom of epoxide showing excellent regioselectivity. Acidic catalysts readily cause epoxide protonated, which suffers from nucleophilic attack of cellulose and forms the carbocation-like intermediate. Brønsted acid exhibits poor regioselectivity, however, Lewis acid shows an interesting balance between catalytic activity and regioselectivity for the crosslinking reaction, which may be attributed to the unique catalysis and stabilization effects of its coordinated H2O on the transition state structure.


Assuntos
Celulose , Compostos de Epóxi , Compostos de Epóxi/química , Solventes/química , Hidróxido de Sódio , Catálise , Ácidos de Lewis
13.
Environ Sci Technol ; 57(34): 12890-12900, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590166

RESUMO

An appealing strategy for ensuring environmental benefits of the photocatalytic NO oxidation reaction is to convert NO into NO3- instead of NO2, yet the selectivity of products remains challenging. Here, such a scenario could be realized by tailoring the exposure of Lewis acid sites on the surface of ZrO2, aiming to precisely regulate the ROS evolution process for the selective oxidation of NO into NO3-. As evidenced by highly combined experimental characterizations and density functional theory (DFT) simulations, Lewis acid sites serving as electron acceptors could induce itinerant electron redistribution, charge-carrier transfer, and further oxidation of •O2-, which promotes the oriented formation of 1O2. As a result, monoclinic ZrO2 with more Lewis acid sites exhibited an outstanding NO conversion efficiency (56.33%) and extremely low NO2 selectivity (5.04%). The ROS-based reaction process and promotion mechanism of photocatalytic performance have been revealed on the basis of ESR analysis, ROS-quenching experiments, and in situ ROS-quenching DRIFTS. This work could provide a critical view toward oriented ROS formation and advance a unique mechanism of selective NO oxidation into NO3-.


Assuntos
Ácidos de Lewis , Dióxido de Nitrogênio , Espécies Reativas de Oxigênio , Oxirredução , Oxidantes
14.
Bioresour Technol ; 387: 129600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532058

RESUMO

This study aimed to produce bio-based levulinic acid (LA) via direct and efficient conversion of cellulose catalyzed by a sustainable solid acid. A carbon foam (CF)-supported aluminotungstic acid (HAlW/CF) catalyst with Brønsted-Lewis dual-acidic sites was creatively engineered by a hydrothermal impregnation method. The activity of the HAlW/CF catalyst was determined via the hydrolysis and conversion of cellulose to prepare LA in aqueous system. The cooperative effect of Brønsted and Lewis acids in HAlW/CF resulted in high cellulose conversion (89.4%) and LA yield (60.9%) at 180 °C for 4 h, which were greater than the combined catalytic efficiencies of single HAlW and CF under the same conditions. The HAlW/CF catalyst in block form exhibited superior catalytic activity, facile separation from reaction system, and favorable reusability. This work offers novel perspectives for the development of recyclable dual-acidic catalysts to achieve one-pot catalytic conversion of biomass to value-added chemicals.


Assuntos
Celulose , Ácidos de Lewis , Carbono , Ácidos Levulínicos , Catálise
15.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446637

RESUMO

Defects in perovskite films are one of the main factors that affect the efficiency and stability of halide perovskite solar cells (PSCs). Uncoordinated ions (such as Pb2+, I-) act as trap states, causing the undesirable non-radiative recombination of photogenerated carriers. The formation of Lewis acid-base adducts in perovskite directly involves the crystallization process, which can effectively passivate defects. In this work, 4-(trifluoromethyl)-1H-imidazole (THI) was introduced into the perovskite precursor solution as a passivation agent. THI is a typical amphoteric compound that exhibits a strong Lewis base property due to its lone pair electrons. It coordinates with Lewis acid Pb2+, leading to the reduction in defect density and increase in crystallinity of perovskite films. Finally, the power conversion efficiency (PCE) of PSC increased from 16.49% to 18.97% due to the simultaneous enhancement of open-circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF). After 30 days of storage, the PCE of the 0.16 THI PSC was maintained at 61.9% of its initial value, which was 44.3% for the control device. The working mechanism of THI was investigated. This work provides an attractive alternative method to passivate the defects in perovskite.


Assuntos
Chumbo , Ácidos de Lewis , Compostos de Cálcio , Imidazóis , Bases de Lewis
16.
Bioresour Technol ; 385: 129458, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37419289

RESUMO

Lignin is the most abundant natural phenolic polymer. However, the severe condensations of industrial lignin resulted in an undesirable apparent morphology and darker color, which hindered its application in the field of daily chemicals. Therefore, a ternary deep eutectic solvent is used to obtain lignin with light-color and low condensations from softwood. The results showed that the brightness value of lignin extracted from aluminum chloride-1,4-butanediol-choline chloride at 100 °C and 1.0 h was 77.9, and the lignin yield was 32.2 ± 0.6%. It is important that 95.8% of ß-O-4 linkages (ß-O-4 and ß-O-4') was retained. Lignin is used to prepare sunscreens and is added to physical sunscreens at 5%, with SPF up to 26.95 ± 4.20. Meanwhile, enzyme hydrolysis experiments and reaction liquid composition tests were also conducted. In conclusion, a systematic understanding of this efficient process could facilitate high-value utilization of lignocellulosic biomass in industrial processes.


Assuntos
Solventes Eutéticos Profundos , Lignina , Lignina/química , Ácidos de Lewis , Solventes/química , Protetores Solares , Biomassa , Hidrólise
17.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375279

RESUMO

Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.


Assuntos
Amino Açúcares , Glicosídeos Cardíacos , Ácidos de Lewis , Carboidratos , Glicoconjugados , Aminoglicosídeos , Estereoisomerismo
18.
Org Lett ; 25(27): 4996-5000, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37382578

RESUMO

We report herein an unusual one-pot preparation of α-benzyl-substituted conjugated enals via ZnCl2/LiCl/H2O-mediated transformation of styrenes. On the basis of experimental and computational studies, an underlying mechanism including electrophilic addition and hydride transfer with iminium cations has been proposed. The effect of the LiCl/ZnCl2/H2O combination on the reaction yield has been studied, demonstrating their participation in the activation and the key isomerization of an iminium electrophile.


Assuntos
Ácidos de Lewis , Estirenos , Cloreto de Lítio
19.
Org Lett ; 25(27): 5173-5178, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37384740

RESUMO

An efficient and practical route for the synthesis of ß-amino sulfides by Lewis acid-mediated electrophilic thiolative difunctionalization of enimides is disclosed. A series of free phenols, electron-rich arene, alcohol, azide, and hydride, are successfully incorporated into the substrates in high regio- and stereoselectivities under mild conditions. The obtained products possess multiple functional groups and can be easily transformed to other valuable molecules.


Assuntos
Ácidos de Lewis , Sulfetos , Fenóis , Imidas/química
20.
Org Lett ; 25(25): 4650-4655, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37318335

RESUMO

Deoxyhalogenation of aryl aldehydes, ketones, carboxylic acids, and esters has been achieved utilizing an appropriate metal halide Lewis acid acting as a carbonyl activator and halogen carrier in combination with borane-ammonia as the reductant. Selectivity is accomplished by matching the stability of the carbocation intermediate with the effective acidity of the Lewis acid. Substituents and substitution patterns significantly influence the requisite solvent/Lewis acid combination. Logical combinations of these factors have also been applied for the regioselective conversion of alcohols to alkyl halides.


Assuntos
Ácidos de Lewis , Metanol , Catálise , Álcoois , Aldeídos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...